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1 Introduction

The theory of time scale, which was initiated by
Hilger [1], trying to treat continuous and discrete
analysis in a consistent way, have received a lot of
attention in recent years. Various investigations
have been done by many authors. Among these
investigations, some authors have taken research
in the oscillation of dynamic equations on time
scales, and there has been increasing interest in
obtaining sufficient conditions for the oscillation
and asymptotic of solutions of various dynamic
equations on time scales (for example, we refer
to [2-20]). But we notice that most of the inves-
tigations are concerned with oscillation of solu-
tions of first or second order dynamic equations
on time scales, while relatively less attention has
been paid to oscillation of solutions of third or-
der dynamic equations on time scales. For recent
results about the oscillation of solutions of third
order dynamic equations on time scales, we refer
to [21-34]. Moreover, none of the existing results
deal with oscillation of solutions of third order
dynamic equations with damping term on time
scales to our best knowledge.

In this paper, we are concerned of oscillation
of solutions of the third order dynamic equation
with damping term on time scales of the following
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form:

(a(®)[r(H)z2(0)]2)2 + p(t)[r(t)z> (1))
+q(t)z(t) =0, te T,

(1)

where T is an arbitrary time scale, Tg =
[to,OO) ﬂT7 a, r,p,q¢c C’/‘d(TOaRJr)'

A solution of Eq. (1) is said to be oscillatory
if it is neither eventually positive nor eventually
negative, otherwise it is nonoscillatory. Eq. (1) is
said to be oscillatory in case all its solutions are
oscillatory.

We will establish some new oscillation
criteria for Eq. (1) by a generalized Riccati
transformation technique in Section 2, and
present some applications for our results in

Section 3. Throughout this paper, R denotes
the set of real numbers and Ry = (0,00),
while Z denotes the set of integers. T denotes

an arbitrary time scale and Ty = [tg,00)(T,
where tg € T. On T we define the forward
and backward jump operators ¢ € (T,T) and
p € (T,T) such that o(t) = inf{s € T,s > t},
p(t) = sup{s € T,s < t}. A point t € T with
t > infT is said to be left-dense if p(t) = t
and right-dense if o(t) = ¢, left-scattered if
p(t) < t and right-scattered if o(t) > ¢. A
function f € (T,R) is called rd-continuous if
it is continuous in right-dense points and if
the left-sided limits exist in left-dense points,
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while f is called regressive if 1 + u(t)f(t) # 0,
where p(t) = o(t) —t. C,q denotes the set of
rd-continuous functions, while SR denotes the set
of all regressive and rd-continuous functions, and

Rt ={f|feR, 1+put)f(t) >0, Vte T}

Definition 1: For p € R, the exponential
function is defined by

ep(t. 5) = cxp( / £t (p(7))AT)

for s,t € T.

Remark 2: If T = R, then

t
ep(t,s) = exp(/ p(T)dr), for s, tER,

If T =7, then
t—1
ep(t;s) = [ [[1+p(7)],

fors, t € Z and s < t.
The following two theorems include some
known properties on the exponential function.

Theorem 3 [35, Theorem 5.1]: If p € R,
and fix tg € T, then the exponential function
ep(t,to) is the unique solution of the following
initial value problem

{ y2(t) = p(t)y(t),
y(to) = 1.

Theorem 4 [35, Theorem 5.2]: If p € R™, then
ep(t,s) >0 for Vs, t € T.

For more details about the calculus of time
scales, we refer to [36].

2 Main Results

For the sake of convenience, in the rest of this

t €_ p (S to)
paper, we set 01(t,t1) = N a( 3 As, and we
always assume t; € T, 1 =1,2,...,5.

Lemma 5. Suppose —% € R, and assume
that
—B(SatO)

J, ~aw

/too LAs = 00, (3)

o ()
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and Eq. (1) has a positive solution z [tg, 00)T.
Then there exists a sufficiently large ¢; such that

(a(t)[r(t)xA(t)]A )A

€_p (tvto)
a

<0, [r()z®t)]> >0

on [t1,00)T.

Proof. By —2 € M, we have e_»(t,19) > 0.

Since x is a positive solution of (1) on [tg,c0)T,
we obtain that

(a(®)[r(H)z2 (£)]2)A (e_ %(t t0))2a(t)[r(t)z? (t)]A
e_p (t,to)e_ g(a(t) to)
z2 (]2

(4)

a®lr(z>(0]% is strictly decreasing on

Then o o)

[to, 00)T, and together with a(t) > 0, e_z(t,t9) >

0 we deduce that [r(t)x®(¢)]* is eventually of one
sign. We claim [r(t)2® ()] > 0 on [t1,00)T. Oth-
erwise, assume there exists a sufficiently large to
such that [r(t)z(¢)]® < 0 on [tz,00)r. Then

r(t)zB(t) — r(t2)a®(t2)
¢ 6_5(S,to)a(s)[r(s)zA(S)}AA
= Jts e_p (s,to)a(s) s (5)
n e_g (s,t0)
a(s) S.

a(t2)[r(t2)a (t2)]%
e_ % (tz ,to) to

IN

By (2), we have 1tlim r(t)z?(t) = —oo, and thus
—00

there exists a sufficiently large t3 € [tg, 00)T such

that 7(t)z(t) < 0 on [t3,00)r. By the assump-

tion [r(t)z2(t)]* < 0 one can see r(t)z>(t) is

strictly decreasing on [t3, 00)T, and then

(s $A S
x(t) — x(tg) ti, %As

< ’I”(tg t3 fts r(s As.
Using (3), we have tlim x(t) = —oo, which leads
—00

to a contradiction. So [r(t)z®(t)]® > 0 on
[t1,00)T, and the proof is complete.

Lemma 6. Under the conditions of Lemma
5, furthermore, assume that

e p('rto

hm sup fto fg —

oo’ q(s) (6)
fT 7@7£(J(5)7t0)AS)AT}A§ = 00.
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Then either there exists a sufficiently large t4
such that z2(¢) > 0 on [t4, 00)T or tlim z(t) = 0.
—00

Proof. By Lemma 5, we deduce that z(t)
is eventually of one sign. So there exists a
sufficiently large ¢4 such that either xz2(t) > 0
or x(t) < 0 on [ty,00)r. If 2(t) < 0, together
with z(t) is a positive solution of Eq. (1) on
[to,00)T, We obtain tli)r&x(t) = a > 0 and

lim 7(t)z2(t) = B < 0. We claim o = 0. Oth-
t—00

erwise, assume « > 0. Then there exists t5 such
that x(t) > « on [ts5, 00), and an integration for
(4) from ¢ to oo yields

_a@®r®z2 (0]

e_g(t,to)
_  lim S0F@EA@I o _—g(s)e(s)
—lim S T @

o _als)als)
<) e ema e < e

which is followed by

a( 8) to)AS]

2
< —af Z(t) ft eg

Substituting ¢ with 7 in (7), an integration for (7)
with respect to 7 from ¢ to co yields

r(t)a®(t)
= lim r(t)a®(t)
e p(T 10) oo s
aft aT fT eiggé(l),to)AS)AT
e » (T:t0) oo s
aft aT fT eiggtg(l),to)As)AT
e p(Tto) s
< —a [7( a(7) - 67521‘5 )S)JO)AS)AT’
which implies
z2(t)
e (’T,to)

1 oo %-2 00
< —alify [T (i [T bt 4947
(8)
Substituting ¢ with £ in (8), an integration for (8)
with respect to £ from t5 to t yields

»”C(t) —x(t5) .
< —a f{ iy [ (i (9)
f°° i As )AT]Ag.

T 67% (o(s),to)

By (9) and (6) we have lim z(t) = —oo, which
t—o00

leads to a contradiction. So we have @ = 0, and
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the proof is complete.

Lemma 7. Suppose —% € R, and assume
that x is a positive solution of Eq. (1) such that
[r(t)z® ()] >0, z2(t) > 0 on [t1,00),

where t; > tg is sufficiently large. Then we have

51(t,t1) ra(®)[r(®)z? (¢)]2
A () > 2| ()e[f(g)a,té))} )

a@®)[r(H)z ()]

Proof. By Lemma 5 we have == 2 (60)

00). So

is strictly decreasing on [t1,

r(t)xA(t) > r(t)xA(t) — r(tl)xA

e p(s to)a (s)[r(s)gcA(s)]A

(t1)

th e p (s,to)a(s) As
a@lr(z ()2t -2(5t0)
> e_%(tﬂfo) t1 a(s) s
a(t)[r(t)z? ()]
= 51 (t7 tl)()‘j_(g)TO())]j
and then

S1(tt) ra(®)[r®)z? (1)]A
zB(t) > 175(,5)1)[ ()e[f(g)(tyt(f))} )

which is the desired result.

Theorem 8. Suppose —g € MRy, and assume
that (2), (3), (6) hold, and for all sufficiently

large ¢1, there exists {5 such that

lim sup{ [, {a(5) ;7 (ibymy — ¢(s)lals)o(s)]2
n ol t1)a ((;;(s))so??a(s»
¢2(8)r(8)+24(5)d1 (s,t1)a(o(s o(s
_[o2(s)r(s) 4r((s))¢1(g)511()87§1)( Ne(o(s) }AS} 0,
(10)

where ¢, ¢ are two given nonnegative functions
on T. Then every solution of Eq. (1) is oscillatory
or tends to zero.

Proof. Assume (1) has a nonoscillatory so-
lution x on [tp,00)r. Without loss of generality,
we may assume x(t) > 0 on [t1,00), where
is sufficiently large. By Lemma 6 we have either
z2(t) > 0 on [ta,00)r for some sufficiently large
ty or tlg(r)lo z(t) = 0. Now we assume z>(¢) > 0 on

[t27 OO)']T

. Define the generalized Riccati function:
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Then we have Substituting ¢ with s in (11), an integration

for (11) with respect to s from ¢y to t yields
5 = e@) e ®z2 )2
WA (1) = 48] 2

e p(tto)

t
REO)E O é)()ﬁ(;f(tmﬁ Juda(s) e 0oy — @) [als)e(s)]A
NN 6()01 (s:11)0% (o)) ¢ (0 (5))
+o(Dla(t)e(] + 62 (Dalo (1)e(o(1) G
_ 90 [0t @) _ C gt a0 01 e ey e s
()L e_p(o(t)to) e_p(tto)e_p(a(t).to)
N a a < — <
[ (052 ()6() ol ro(t)e (o(0)* wit2) —wlf) < wit),
z(t)w(a( ) e_p(o(t)t0) hich " 10Y. So th . |
o) [at)p)]A + ¢2 (Ha(a(t))e(o(t)) which contradicts (10). So the proof is complete.
Lg[(a(t)[T(t)zA ;)]p()A(;pt(B[T( )’”A(t)]A] In Theorem 8, if we take T for some special
o) A w(o(t)) - [3) t)x t)]a(a(t))(T(O'(t)):cA(U(t)))A cases, then we can obtain the following corollaries:
3(o()" z(o(t))e_p (o(t)t0)
Fo(D)alt)p(t)]> ¢ Corollary 9. Let T = R. Assume that
_ o(t o2 (t e st
= —a(t); g(é(zf),t()) S (®) S _Zfs) ) 4s = oo, (12)
A alo rio fﬂA o A
Fo()la(t)p(t)]> - [“*%a) e e e 1 (13)
a T as = 09, 13
< —g(t) 2 + S w(o(t)) + o) [at)p(t)] o e
o(t 5tat a(t)[r(t)z® ()] 1a(a(t))(r(o(t))z? (a(t)))D ethO)
_(ﬁ) lyg(t)l)[ e[(p)(tto( = (35(27((t)()e(_)%) g(g),go))) S g J& (e 7 p((s)to)ds)dﬂdf 00,
_ (t) o2 (t) A (14)
< t + w(o(t)) + o(t)|a(t)p(t
< —a()g -2 (o(t)to) ¢( ®) (o(t) +¢(0)la(t)o ()] and for all sufficiently large t1, there exists t5 such
—( (t) )51(t tl)[ a(e(®)[r(o(t)= A(U(t))]A] that
z(o(t))/ r(t) e_p(a(®),to)
a(o(t))(r(a(t)z? (a(1) t ()
e g o0 Jim sup{ [ {066~ — s(s)la(s)es)
e_»(s,
= —a(t) ooty + aee(e(t) + o) alt)e(t)] t A
&(t)o1(t, ) a(o () (r(o(t))z® (o (t)))2
S ) L B(s)01(s.0)a*(5)¢%(5)
A
= () s + (o (1) + (0 a(t)p(2)] ")
3. rwlo / 2
_[¢(t)f2t()t7 1)][¢E0’Et§§ a(o(t))p(a ()] e (8)7"(3)4—!—(2;125?)%(?ti);l(s)‘)p(s)] Yds) = oo,
r{s §)01\S, 11
=~ G + Ole)e () (15)
onG t1)a2(a(1))p2(o (1) where ¢, ¢ are two given no(n?esgative functions
=0) g e_p(sto
65(1) | et )ale(t)e(o(t) on R, and 01(s,11) = J,, —gry—ds. Then every
+[¢(U(t)) + (0o (1)) Jw(o(t)) solution of Eq. (1) is oscillatory or tends to zero.
_gWatt) 2
T(t)¢2( O (o()) Corollary 10. Let T = Z and -2 € R,.
00— S + 0Olae) Assume that
o) (tt)a ((t)( )¢*(a(t)) i e_p(s,to) (16)
r e =% 16
[¢0<t> W EGLTAMNIUOIECGINE s=to
FIGIO)) ¢<(t))6%(étt)?f)(t))
r(t)p=(o(t)) S 1
= ~0) Gty + Dlal)e(0] 2 7@ =% (7)
9081 (t)a?(0(1) (o (1)) - - -
r(t) E [% Z(e?g((T),to) Z ((1(3) ))] — 5
(& a(T e_p(s+1,to )
A a(o o ¢=to T=¢ =T
L L2@r (t)+24?2t§51(g;11()t t(l)(t))v( Q) (11) (18)
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and for all sufficiently large t1, there exists t2 such
that

hm Sup{ Z {a(s )m

s=t2

—<25( Jlals + Dp(s + 1) — a(s)e(s)
+¢>(S)51(S,tl)iQ(SJrl)@Q(erl)
2 (s)r(s)+2¢(s)d1(s,t1)a(o(s o(s))]? o
_[e2(s)r(s) 4r((s))¢1(§)511()81£1)( )e(a(s))] 1= oo,
(19)

where ¢, ¢ are two given nonnegative functions
=1 e P(Syto)

on Z, and 01(s,t1) = >, —a— Then every
s=t1

solution of Eq. (1) is oscillatory or tends to zero.

Theorem 11. Suppose —2 € 9, and
assume that (2), (3), (6) hold, and define
D = {(t,s)|t > s > tg}. If there exists a function

H € Cp4(D,R) such that

H(t,t) =0, fort > t,

H(t,s) >0, fort>s>t, (20)

and H has a nonpositive continuous A— partial
derivative H”s(t,s) with respect to the second
variable, and

. t ¢
Jim sup gt U, 5t 9)la(9) e ot
2

~(s) als)p(s))® + LG
]

2 (8)r(8)+20(s)d1(s,t1)alo(s))p(o(s))]?
[ ( ) ( ) 4r((s))¢1(£)611()37§1)( )) ( ( )) ]AS} = Q.

Then every solution of Eq. (1) is oscillatory or
tends to zero.

Proof. Assume (1) has a nonoscillatory so-
lution z on [tg, 00)r. Without loss of generality,
we may assume x(t) > 0 on [ty,00)T, where t;
is sufficiently large. By Lemma 6 we have either
x2(t) > 0 on [tg,00)T for some sufficiently large
ta or tliglo z(t) = 0. Now we assume z°(¢) > 0 on

[to,00)T. Let w(t) be defined as in Theorem 8.
By (11) we have

a(t) oty — () (a®)e (1)

()01 (tt1)a% (o(£) 2 (o (t)
A ()r(B)120(8)81 (tt1)a(o(8) (o (£)]
4r(t)p(t)o1(t,t1)

< —wh(t).

Substituting ¢ with s in (22), multiplying both
sides by H (t,s) and then integrating with respect

E-ISSN: 2224-2880
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to s from ty to t yields

S H(t,)[a(s) 70k = 6(s) (als)i(s))
L 931 (s:t1)a’ (o)) (0 ()

r(s)

[¢2 (s)r(s)+26(s)d1 (s,t1)a(a(s)) (o (s))]?
- 47“(5)(151(5)611(8,151) JAs

—ft H(t,s)w™(s)As
w(ta) + [} HA(t, s)w(o(s))As
w(tg) S H(t,to)w(tg).

Then

S Ht,8)la(s) 715055 — d(s)(a(s)e(s))>
4 931 (s:t1)a? (0(5)]* (0 (5))

r(s)

[ (s)r(s)+28(s)81(s,t1)a(o(s))p(o(s))]?
- Ir(s)é 1( )511(3,151) JAs

= [ H(t,9)[a(s) oy — 6(5)(a(s)p(s)) A

a

4 2(8)01(s,t1)a?(0(5)) (0 (5)

r(s)

(62 (s)r(s) +26(5)01 (.01 )a(o(5) (0 (5))]?
- 4r<s)¢>1<s>6f(s,t1> JAs

+ Loy H (0 9)la() e oty — 6(6) (als)o(s)>
Jr¢(s)61(s t1)a”(a(s))*(a(s))

r(s)

(62 (5)r(s) +26(5)31 (11 )a(o () o (0 (5))]2
- ()60 (1) JAs

S H(t, to)w(tg)

t o(s
+H(t,to) [, la(s % -
+¢(S)51(87t1)a2((<§(8))90 (0(5))

[¢2 (s)r(s)+28(s)d1 (s,t1)a(o(s))(o(s))]
- 4r(s)¢1(s)511(s,t1) ’AS

o(s)(a(s)p(s))”

So

. t )
lim sup o (i H(t )la(s) o oty

—(s)(a(s)p(s))™ + Ll
]

_ [62(9)r(s)+26(s)01(s,t1)a(o(s)) (o (s))
4r(s)p(s)o1(s,t1)

< wit) + [ lg(s) 2 — 6(s) (als)p(s))>
+¢(S) 1(s,t1)a : )( $)e?(a(s))

2(o
62 ()1 (5)+26(5)81 (s.11)a(o(s))p(o ()2
- ()3 (5.1 |As
< 00,

which contradicts (21). So the proof is complete.
In Theorem 11, if we take H(t,s) for some

special functions such as (£ —s)™ or In £, then we
can obtain some corollaries. For example, if we
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take H(t,s) = (t — s)™, m > 1, then we have the
following corollary:

Corollary 12.  Suppose —2 € 9., and

assume that (2), (3), (6) hold, and

. t m o(s
Jim sup o Ly, (= )" a(9) e G

—é(s)(a(s)p(s) + ¢(s)§1(s’tl)a:(? 5

[¢2 (s)r(s)+2¢(s)d1 (s,t1)a(o(s)) (o (s))]?
- 4T(5)¢1(s)511(5,t1) JAs}

Nt
~—

= 00.
(23)
Then every solution of Eq. (1) is oscillatory or

tends to zero.

3 Applications

In this section, we will present some applications
for the established results above.  First we
consider the following third order half linear
differential equation with damping term:

Example 1.

[t(z" (1)) +l (t)+tl2x(t)20, t €[2,00). (24)
) We havein (1) T =R, a(t) =t, p(t) = q(t) =
2, r(t) = 1, to = 2. Then u(t) = o(t) —t =

0, and —% 6 %Jr So e_»(t,to) = e_r(t,2)

exp(— f . Moreover, we have

tp(S) t p(s)
()ds)>1— a(s) 48

Lds=1+3[t2-272> L

1> exp(—

t
2 s3

—1—

Then we have

> e_»(s, o) 7 [®1
/ —t——ds > / —ds = 00,
to a(s) 8 2 S

and
|, =
——ds = .
to T(S)
Furthermore,
e p Tto) ( )
fto 7“(5 f£ ( a(T) f’r e p(sto)ds)dT]dg

e p(7,2)
R e L ds)drlde

> TSR [ ds)ar]e
= LU Barlde = 1[5 b = oo
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On the other hand, for a sufficiently large t1, we
have

te_p(s,t t
51(t,t1)—/ Mds> 7/ 1ds—>c>o.
t1 a(s) 8 t S

So there exists a sufficiently large to > t1 such
that 01(¢,¢1) > 1 for t € [ta,00). Taking ¢(t) =
t, ©(t) =0 1in (15), we get that

t
Jia
> ftZ

So (12)-(15) all hold, and by Corollary 9 we de-
duce that every solution of Eq. (24) is oscillatory
or tends to zero.

(¢'())%r(s)
 1¢(s)01(5,t1) Jds

ds—ftt 3ds—>oo

e pst()

s) ¢(S
l

Next we consider the following third order
half linear difference equation:

Example 2
2 L 1
AltA%x(t)] + t—QA x(t) + t—gx(t) =0, t €[2,00)z,
(25)
where A denotes the difference operator.
We have in (1) T =Z, a(t) =t, p(t) = q(t)
=&, r(t)=1, to =2. Then p(t) =o(t) —t =1,

and

1—()p(t) —rsi- Loy

A7) = > il
a(t 3~ 23
which implies —2 € %,. So by [2, Lemma 2] we
obtain

e_ Z(t to) = e_ 5 fzts(z)A
_ t 1 _ — 1
=1- 2?AS—1—S§2§
>1- [T hds=1+ L[t -1)2-1]> 1,
and
t
p(s)
e_r(t,tg) < exp —/ —As) <1
c(t.10) < exp(— [ 22N
Then we have
X e_p(s,to) X e_p(s2)
Z e T X, e
0 6_2(572) s}
= Z 5 > % Z % =,

and
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Furthermore,
) 0 e p(Tto 00 s
2 [rg X > ety
o, = 25—; i
= gz[r(la 23&( am Py} e_gﬁm))]
S PIONCHE)
=32 XGX N> XX G Y )]
£o:o2 o T oo 00 ¢=27= S:og
EPDEEESPIEC IR N
E=271=¢ =27= £=2

On the other hand, for a sufficiently large t1, we
have

e n(s,tg) 14
ot t) =Y —= N oo
1(t1) a(s) 2 s
s=t1 s=t1

So there exists to > t; such that d1(¢,¢1) > 1 for
t € [t2,00)z. Let ¢(t) =t, ©(t) =0in (19). Then
we have

t—1

&(s d(s+1)—p(s))%r(s
> la(s) e_£(§431,t0) — (4¢(z)61é83t)1) : )]

s=to

S S

s=to

=1,

= s — OQ.

So (16)-(19) all hold, and by Corollary 10 we ob-
tain that every solution of Eq. (25) is oscillatory
or tends to zero.

Finally we consider the following third order
q— difference equation:

Example 3.
1 1
(1222 ()2 + 5222 (O + Zu(t) = 0,1 € [g.00)z,
(26)
where T = ¢%, ¢ > 2.
We have in (1) a(t) =t, p(t) = q(t) = t%’
r(t) =1, to = q. Then u(t) =o(t) —t =t(q—1),
and
L— ()2 =1—tg-Dh=1-(¢- 1%
>1-(¢-1)p= ‘12;‘21“ >0,

which implies —2 € R,. So by [2, Lemma 2] we
obtain

G,E(t to) = e_ Z(t q) > 1—ftZE§§AS

t 1 t— 27(] 2 . 1+t_272q_2
_l_fsA_l_ ¢ 21 —  1-q2
1—2¢—2 1 4
> Tog7 2 293¢ = A
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and
e_»(t,to) < exp(—

Then we have

oo € psto 006_2(5‘]
fto a(s = f As
00 B,Q( q) o0
=/, —As > 2(q2_1) fq 1As =00
and
[
——As =00
to T(S)
Furthermore
6,B(Tvt0) 00 s
o g [ (e ) eiggcg(l),t As)AT|AL

[—312)AT]AE

2 ocor oo
> o U hpielae
’ foolAf 00.

-
T 2(¢-1)

On the other hand, we have

t €_p (s5t0)
—+—~—/AS
ti a(s)

01(t,t1) =
2 t
> % ftl %AS — OQ.

So there exists to > t; such that 01(¢,¢1) > 1 for
t € [t2,00)z. Let m =1, ¢(t) =t, ¢(t) =0 in
(23). Then we have

é(s)

. t
thm sup ﬁ{fb (t— 5)[‘1("’)%

(62(s))°r

4(]5(8)(51(8 tl ]A }
> lim sup W ft2(t —5)2As
t 3(t—t
- hm sup[( 0 Jio 4% — 4((#/7;))] = 00.

So (2), (3), (6) and (23) all hold, and by Corollary
12 we obtain that every solution of Eq. (26) is
oscillatory or tends to zero.
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